Supporting Information

Rec. Nat. Prod. 15:2 (2021) 130-135

Chemical Investigation of a Co-Culture of

Aspergillus fumigatus D and Fusarium oxysporum R1

Ronglu Yu¹, Mingzhu Li¹, Yi Wang¹, Xuelian Bai², Jianwei Chen¹,

Xingnuo Li¹, Hong Wang¹ and Huawei Zhang^{1,*}

¹School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014,

China;

²College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China

Table of Contents	Page
Figure S1: HR-ESI-MS spectrum of compound 1	2
Figure S2: FT-IR (KBr) spectrum of compound 1	3
Figure S3: ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 1	4
Figure S4: ¹³ C NMR (151 MHz, CDCl ₃) spectrum of compound 1	5
Figure S5: DEPT-135 (CDCl ₃) spectrum of compound 1	6
Figure S6: HSQC (CDCl ₃) spectrum of compound 1	7
Figure S7: HSQC (C_6D_6) spectrum of compound 1	8
Figure S8: HMBC (CDCl ₃) spectrum of compound 1	9
Figure S9: ¹ H- ¹ H COSY (CDCl ₃) spectrum of compound 1	10
Figure S10: NOESY (CDCl ₃) spectrum of compound 1	11
Figure S11: UV (MeOH) spectrum of compound 1	12
Figure S12: CD spectrum of compound 1	13
Figure S13: A putative biosynthetic pathway of compound 1	14
Table S1: Antimicrobial activities of compounds 1-7	15
Table S2: The comparison of ¹ H NMR (CDCl ₃) of compound 1 and its analogue (δ in ppm, <i>J</i> in Hz)	16

Figure S1: HR-ESI (+)-TOF-MS spectrum of compound 1.

Figure S2: IR (KBr) spectrum of compound 1.

Figure S3: ¹H NMR (600 MHz, CDCl₃) spectrum of compound 1.

Figure S4: ¹³C NMR (151 MHz, CDCl₃) spectrum of compound 1.

Figure S5: DEPT-135 (CDCl₃) spectrum of compound 1.

Figure S7: HSQC (C₆D₆) spectrum of compound **1**.

Figure S8: HMBC (CDCl₃) spectrum of compound 1.

Figure S9: ¹H-¹H COSY (CDCl₃) spectrum of compound **1**.

Figure S10: NOESY spectrum (600 MHz, CDCl₃) of compound 1.

Figure S11: UV spectrum of compound 1 in MeOH.

Figure S13: A putative biosynthetic pathway of compound 1.

	MIC (µM)		
Compound	Escherichia coli 25922	Staphyloccocus aureus ATCC 25923	Candida albicans ATCC 10231
1	>100	>100	>100
2	>100	>100	>100
3	>100	>100	>100
4	>100	>100	>100
5	>100	50	>100
6	>100	100	>100
7	>100	25	>100
Ampicillin sodium	12.50	6.25	-
Amphotericin B	-	-	0.78

Table S1: Antimicrobial activities of compounds 1-7.	
---	--

Position	$ \begin{array}{c} 8 & 7 \\ \vdots \\ 5 & 3 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ 0 \\ 2' \\ 1' \\ 0 \\ 2' \\ 0 \\ 0 \\ 0 \\ 1' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} $
1		
2		
3	6.18 (1H, d, <i>J</i> = 9.6)	6.23 (1H, t)
4	2.39 (1H, m)	2.29 (2H, m)
5	1.35 (2H, m)	1.04 (3H, t)
6	0.84 (3H, t, <i>J</i> = 7.8, 7.2)	2.17 (2H, m)
7	1.87 (3H, d, <i>J</i> = 1.2)	1.43 (2H, m)
8	0.99 (3H, d, <i>J</i> = 6.6)	0.92 (3H, t)
1′		
2'	4.09 (2H, d, <i>J</i> = 5.4)	4.65 (1H, m)
3'		1.43 (3H, d)
OCH ₃	3.77 (3H, s)	3.76 (3H, s)
NH	6.34 (1H, br s)	6.30 (1H, br s)

Table S2: The comparison of ¹H NMR (CDCl₃) of compound **1** and its analogue (δ in ppm, *J* in Hz).